Reactions of the cationic but-2-yne complex $\left[\mathrm{WI}(\mathrm{CO})(\mathrm{NCMe})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right\}\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right]$ with bidentate nitrogen donor ligands

Paul K. Baker and Kevin R. Flower
Department of Chemistry, University of Wales, Bangor Gwynedd, LL57 2UW (UK)

(Received May 19, 1993)

Abstract

Reaction of the complex [$\mathrm{WI}(\mathrm{CO})(\mathrm{NCMe})\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right)\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\left[\mathrm{BF}_{4}\right]$ with an equimolar quantity of NN ($\mathrm{NN}=2,2^{\prime}$ bipyridyl, 1,10 -phenanthroline, 5,6 -dimethyl-1,10-phenanthroline, N, N^{\prime}-cyclohexyldiazabutadiene, N, N^{\prime}-'butyldiazabutadiene or N, N^{\prime}-p-methoxyphenyldiazabutadiene\} at room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ smoothly affords good yields of the new dicationic mixed ligand complexes [$\mathrm{W}(\mathrm{CO})(N N)\left(\mathrm{Ph}_{2} \mathrm{P}^{2}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right)\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}^{2}\right)\left[\mathrm{BF}_{4}\right] \mathrm{I}$ (1-6). The dicationic naturc of these complexes was confirmed by reaction of $\left[\mathrm{W}(\mathrm{CO})\left(2,2^{\prime}-\mathrm{bipy}\right)\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2} \mathrm{~K}^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right.$ IBF ${ }_{4}$ II with two equivalents of $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$ in acetonitrile to give the bis(tetraphenylborate) complex [W(CO) $\left(2,2^{\prime}-\right.$ bipy $\left.\left.\left.^{\prime}\right)\left(\mathrm{Ph}_{2} \mathrm{PCCH}_{2}\right) \mathrm{PPh}_{2}\right]\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)[\mathrm{BPh}]_{4}\right]^{(7)}{ }^{13} \mathrm{C}$ NMR spectroscopy indicates that the but-2-yne acts as a four-electron donor in these complexes.

Key words: Tungsten; But-2-yne

1. Introduction

Alkyne-containing complexes of molybdenum(II) and tungsten(II) have received considerable attention in the last 20 years and have recently been the subject of an extensive review article [1]. Although a wide range of monocationic alkyne complexes of molybdenum(II) and tungsten(II) have been reported [1-12], up to the time of the study described below very few dicationic alkyne complexes of this type had been described. Some recent examples described by Lippard and co-workers are $\left[\mathrm{Mo}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)_{5}\left(\eta^{2}-{ }^{\text {t }} \mathrm{BuHNC}=\mathrm{CNH}-\right.\right.$ $\left.\left.{ }^{'} \mathrm{Bu}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2} \quad[13]$ and $\left[\mathrm{Mo}(\mathrm{CNR})_{3}\left(2,2^{\prime}\right.\right.$-bipy $)\left(\eta^{2}\right.$ $\mathrm{RHNC} \equiv \mathrm{CNHR})\left[\mathrm{PF}_{6}\right]_{2}(\mathrm{R}=\mathrm{Me}$ or Et$)$ [14].

In 1988 we reported the synthesis and structures of the coordinatively unsaturated bis(alkyne) complexes of tungsten(II), namely $\left[\mathrm{WI}_{2}(\mathrm{CO})(\mathrm{NCMe})\left(\eta^{2}-\mathrm{RC}_{2} \mathrm{R}\right)_{2}\right]$ ($\mathrm{R}=\mathrm{Me}$ or Ph) [15]. These complexes have been shown to react with phosphorus donor ligands to give complexes of the type $\left[\mathrm{WI}_{2}(\mathrm{CO})\left(\mathrm{L}_{2}\right.\right.$ or $\left.\left.(\mathrm{LL})\right)\left(\boldsymbol{\eta}^{2}-\mathrm{RC}_{2} \mathrm{R}\right)\right]$ ($\mathrm{R}=\mathrm{Me}$ or $\mathrm{Ph} ; \mathrm{L}=$ monodentate phosphine or phos-

[^0]phite; $L L=$ bidentate phosphines) $[16,17]$. The phos-phine-containing mono(alkyne) complexes [$\mathrm{WI}_{2}(\mathrm{CO})$ $\left(\mathrm{L}_{2}\right.$ or $\left.\left.(\mathrm{LL})\right)\left(\eta^{2}-\mathrm{RC}_{2} \mathrm{R}\right)\right](\mathrm{L}=$ monodentate phosphine; $\mathrm{LL}=$ bidentate phosphines) are readily converted into the cationic species [WI(CO) $(\mathrm{NCMe})\left\{\mathrm{L}_{2}\right.$ or $\left.(\mathrm{LL})\right\}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{RC}_{2} \mathrm{R}\right)\right]\left[\mathrm{BF}_{4}\right]$ via treatment with a stoichiometric quantity of $\mathrm{Ag}\left[\mathrm{BF}_{4}\right]$ in $\mathrm{NCMe}[18,19]$. We have investigated the reactivity of these cationic alkyne containing complexes towards a variety of neutral and anionic donor ligands [20-24]. In this paper we report the reactions of the complex [$\mathrm{WI}(\mathrm{CO})(\mathrm{NCMe})\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right)$ -$\left.\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right]$ with neutral bidentate nitrogen donor ligands to give dicationic mono(but-2-yne) complexes.

2. Results and discussion

The complex [WI(CO) $\left(\mathrm{NCMe}^{2}\right)\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right\}$ ($\left.\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}^{2}\right)\left[\mathrm{BF}_{4}\right]$ [19] reacts with a stoichiometric amount of NN ($\mathrm{NN}=2,2^{\prime}$-bipyridyl, 1,10 -phenanthroline, 5,6-dimethyl-1,10-phenanthroline, RNCHCHNR (where $\mathrm{R}=\mathrm{Cy}$, ${ }^{\mathrm{B}} \mathrm{Bu}$ or $p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$)\} to give the mixed ligand complexes $\left[\mathrm{W}(\mathrm{CO})(\mathrm{NN})(\mathrm{dppm})\left(\boldsymbol{\eta}^{2}-\mathrm{MeC}_{2}-\right.\right.$ $\mathrm{Me})$ [$\left.\mathrm{BF}_{4}\right] \mathrm{I}\left\{\mathrm{dppm}=\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right\}(1-6)$ in good
 $\left.\left.\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2}$

Complexes	Colour	Yield (\%)	Analytical data (found(calc.) (\%))
[W(CO) $2,22^{\prime}$-bipy)(dppm)($\left.\left.\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right] \mathrm{I}$	Green	68	C: 46.9 (47.1)
			H: 3.5 (3.6)
			N: 2.7 (2.7)
$\left[\mathrm{W}(\mathrm{CO})(1,10\right.$-phen $\left.)(\mathrm{dppm})\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right] \mathrm{I}$	Green	62	C: 48.3 (48.3)
			H: 3.7 (3.5)
			N: 2.5 (2.7)
$\left[\mathrm{W}(\mathrm{CO})\left(5,6-\mathrm{Me}_{2}-1,10-\mathrm{phen}\right)(\mathrm{dppm})\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right] \mathrm{I}$	Green	64	C: 48.9 (49.3)
			H: 3.7 (3.8)
			N: 2.2 (2.6)
$\left[\mathrm{W}(\mathrm{CO})(\mathrm{CyNCHCHNCy})(\right.$ dppm $\left.)\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right] \mathrm{I}$	Brown/green	58	C: 48.1 (48.7)
			H: 4.4 (4.8)
			N: 2.3 (2.6)
$\left.\left[\mathrm{W}(\mathrm{CO}){ }^{\text {t }} \mathrm{BuNCHCHN}{ }^{\text {t }} \mathrm{Bu}\right)(\mathrm{dppm})\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right] \mathrm{I}$	Brown/green	59	C: 46.0 (46.5)
			H: 4.7 (4.7)
			N: 2.3 (2.7)
$\left[\mathrm{W}(\mathrm{CO})(p-\mathrm{MeOPhNCHCHNPhOMe}-p)(\mathrm{dppm})\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right] \mathrm{I}$	Brown	64	C: 49.1 (49.1)
			H: 3.9 (3.9)
			N: 2.5 (2.5)
$\left[\mathrm{W}(\mathrm{CO})\left(2,2^{\prime}\right.\right.$-bipy $\left.)(\mathrm{dppm})\left(\eta^{\mathbf{2}}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2}$	Green	78	C: 72.5 (73.1)
			H: 5.3 (5.3)
			$\mathrm{N}: 1.7$ (1.9)

yield. The complexes 1-6 have all been characterised by elemental analysis (C, H and N) (Table 1). IR, and ${ }^{1} \mathrm{H}$, and in selected cases, ${ }^{13} \mathrm{C}$ NMR spectroscopy (Tables $2-4$). The complexes 1-6 are all stable for prolonged periods when stored under nitrogen in the dark; however, they do slowly decompose when exposed to air in solution.

Complexes 1-6 are all soluble in chlorinated solvents and acetone, but, as expected, they are totally insoluble in hydrocarbon solvents and diethyl ether. Treatment of 1 with two equivalents of $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$ in acetonitrile at room temperature resulted in exchange of the $\left[\mathrm{BF}_{4}\right]^{-}$and I^{-}counterions to give the bis(tetraphenylborate) complex $\left[W(C O)\left(2,2^{\prime}-\right.\right.$ bipy $)(\mathrm{dppm})\left(\eta^{2}-\right.$ $\left.\left.\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BPh}_{4}\right]_{2}$ (7) in good yield. The preparation of complex 7 confirms the dicationic nature of $\mathbf{1 - 6}$, and

TABLE 2. Infrared data ${ }^{\text {a }}$ for the complexes [W(CO)(NN)(dppm)-$\left.\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right] \mathrm{I}$ and $\left[\mathrm{W}(\mathrm{CO})\left(2,2^{\prime}\right.\right.$-bipy $)(\mathrm{dppm})\left(\eta^{2}-\mathrm{MeC}_{2}\right.$ $\mathrm{Me})]\left[\mathrm{BPh}_{4}\right]_{2}$

Complex	$\nu(\mathrm{C} \equiv \mathrm{O})\left(\mathrm{cm}^{-1}\right)$	$\nu(\mathrm{BF})\left(\mathrm{cm}^{-1}\right)$
$\mathbf{1}$	$1942(\mathrm{~s})$	$1016(\mathrm{brs})$
$\mathbf{2}$	$1940(\mathrm{~s})$	$1015(\mathrm{brs})$
$\mathbf{3}$	$1938(\mathrm{~s})$	$1016(\mathrm{brs})$
$\mathbf{4}$	$1940(\mathrm{~s})$	$1020(\mathrm{brs})$
$\mathbf{5}$	$1940(\mathrm{~s})$	$1020(\mathrm{brs})$
$\mathbf{6}$	$1943(\mathrm{~s})$	$1020(\mathrm{brs})$
$\mathbf{7}$	$1942(\mathrm{~s})$	

[^1]complex 7 was fully characterised by elemental analysis (C, H and N), IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy (Tables 1-4).

The IR spectra for complexes 1-6 all show a strong single carbonyl band at around $1940 \mathrm{~cm}^{-1}$, and a broad strong band at $1020 \mathrm{~cm}^{-1}$ due to the tetrafluoroborate ligand (Table 1). The colour and carbonyl stretching

TABLE 3. ${ }^{1} \mathrm{H}$ NMR data ${ }^{\text {a }}$ for the compounds [W(CO)(NN)(dppm)-$\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\left[\mathrm{BF}_{4}\right] \mathrm{I}$ and $\left[\mathrm{W}(\mathrm{CO})\left(2,2^{\prime}-\mathrm{bipy}\right)(\mathrm{dppm})\left(\eta^{2}-\mathrm{MEC}_{2}{ }^{-}\right.\right.$ Me) $]\left[\mathrm{BPh}_{4}\right]_{2}$

	${ }^{1} \mathrm{H}(\delta) \mathrm{ppm}$
1	$9.05 \rightarrow 6.95\left(\mathrm{brm}, 28 \mathrm{H}, \mathrm{Ph}-\mathrm{H}\right.$ and $2,2^{\prime}$-bipy-H); 4.38 (brm, $\left.2 \mathrm{H}, \mathrm{PCH} \mathrm{H}_{2} \mathrm{P}\right) ; 2.5(\mathrm{~s}, 6 \mathrm{H}, \mathrm{=CMe})$
2	$9.32 \rightarrow 6.95$ (brm, $28 \mathrm{H}, \mathrm{Ph}-H$ and 1,10 -phen); 4.52 (brm, $2 \mathrm{H}, \mathrm{PCH} \mathrm{H}_{2} \mathrm{P}$); 2.65 ($\mathrm{s}, 6 \mathrm{H}, \equiv \mathrm{CMe}$)
3	$9.49 \rightarrow 6.95$ (brm, $26 \mathrm{H}, \mathrm{Ph}-H$ and $1,10-$ phen- H); 4.28 (brm, $2 \mathrm{H}, \mathrm{PCH} \mathrm{P}_{2} \mathrm{P}$); 2.84 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); $2.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.53$ (s, 6H, $=\mathrm{CMe}$)
4	8.72 (s, 2H, CH=CH); $7.75 \rightarrow 6.95$ (brm, 20H, $\mathrm{Ph}-H$); 4.62 (brm, 2H, PCH ${ }_{2} \mathrm{P}$); 3.15 (s, 6H, =CMe); $1.65 \rightarrow 1.15$ (brm, 22H, Cy-H)
5	$\begin{aligned} & 9.05(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}) ; 7.85 \rightarrow 6.95(\mathrm{brm}, 20 \mathrm{H}, \mathrm{Ph}-H) ; \\ & 4.75\left(\mathrm{brm}, 2 \mathrm{H}, \mathrm{PCH} \mathrm{P}_{2} \mathrm{P}\right) ; 2.95(\mathrm{~s}, 6 \mathrm{H}, \equiv \mathrm{CMe}) ; \\ & 2.2\left(\mathrm{brs}, 18 \mathrm{H}, \mathrm{CH} \mathrm{C}_{3}\right) \end{aligned}$
6	$8.85(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{C} H) ; 7.95 \rightarrow 6.85(\mathrm{brm}, 28 \mathrm{H}, \mathrm{Ph}-H)$; 4.72 (brm, 2H, $\mathrm{PCH} \mathrm{H}_{2} \mathrm{P}$); 3.75 (brs, $6 \mathrm{H}, \mathrm{OMe}$); 2.95 (s, 6H, $=\mathrm{CMe}$)
7	$9.05 \rightarrow 6.85$ (brm, $68 \mathrm{H}, \mathrm{Ph}-H, \mathrm{BPh}_{4}-H$ and $2,2^{\prime}$-bipy- H); 4.38 (brm, 2H, $\mathrm{PCH}_{2} \mathrm{P}$); 2.48 ($\mathrm{s}, 6 \mathrm{H}, \equiv \mathrm{CMe}$)

[^2]TABLE 4. ${ }^{13} \mathrm{C}$ NMR data ${ }^{\text {a }}$ for the complexes [W(CO)(NN)(dppm)-$\left.\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[B F_{4}\right] \mathrm{I}$ and $\left[\mathrm{W}(\mathrm{CO})\left(2,2^{\prime}-\right.\right.$ bipy $)(\mathrm{dppm})\left(\eta^{2}-\mathrm{MeC}_{2^{-}}\right.$ $\mathrm{Me})\left[\mathrm{BPh}_{4}\right]_{2}$

Complex	${ }^{13} \mathrm{C}(\delta) \mathrm{ppm}$
1	$\begin{aligned} & 220.32(\mathrm{bs}, \mathrm{C} \equiv C) ; 217.95(\mathrm{~s}, \mathrm{C} \equiv O) ; 154.69 \rightarrow 125.9(\mathrm{brm}, \\ & \left.\mathrm{Ph}-C \text { and } 2,2^{\prime}-\text { bipy- } C\right) ; 30.29\left(\mathrm{t}, \mathrm{PCH}_{2} \mathrm{P},\right. \\ & J(\mathrm{P}-\mathrm{C})=13.82 \mathrm{~Hz}) ; 22.35(\mathrm{~s}, \equiv \mathrm{CMe}) \end{aligned}$
3	$\begin{aligned} & 218.9(\mathrm{~s}, C \equiv C) ; 207.6(\mathrm{~s}, \mathrm{C} \equiv 0) ; 156.96 \rightarrow 125.68(\mathrm{brm}, \\ & \mathrm{Ph}-C \text { and } 1,10-\mathrm{phen}-\mathrm{C}) ; 28.3(\mathrm{t}, \mathrm{PCH} \mathrm{P}, J(\mathrm{P}-\mathrm{C}) \\ & =14.2 \mathrm{~Hz}) ; 23.9\left(\mathrm{~s}, C \mathrm{H}_{3}\right) ; 22.94\left(\mathrm{~s}, C \mathrm{H}_{3}\right) ; \\ & 19.86(\mathrm{~s}, \equiv \mathrm{Me}) \end{aligned}$
4	$\begin{aligned} & 221.7(\mathrm{~s}, \mathrm{C} \equiv \mathrm{C}) ; 143.45(\mathrm{~N}=\mathrm{C}) ; 133.42 \rightarrow 128.32 \\ & \text { (brm, } \mathrm{Ph}-\mathrm{C}) ; 33.81 \rightarrow 24.3\left(\mathrm{brm}, \mathrm{PCH}_{2} \mathrm{P}, \mathrm{Cy}-\mathrm{CH}_{2}\right) ; \\ & 22.03(\mathrm{~s}, \equiv \mathrm{CM} \mathrm{e}) \end{aligned}$
7	$\begin{aligned} & 220.30(\mathrm{brs}, C \equiv C) ; 217.95(\mathrm{~s}, C \equiv \mathrm{O}) ; 165.38,164.60 \text {, } \\ & 163,81,163.04(\mathrm{q}, \mathrm{~B}-C, J(\mathrm{~B}-\mathrm{C})=49.5 \mathrm{~Hz}) ; 136.21 \text {, } \\ & 125.68121 .78\left(3 \mathrm{~s}, \mathrm{BPh}_{4}-C\right) ; 154.69 \rightarrow 125.9 \\ & \text { (brm, Ph-C and } \left.2,2^{\prime}-\mathrm{bipy}-C\right) ; 30.29(\mathrm{t}, \mathrm{PCH} \\ & \mathrm{P} \\ & J(\mathrm{P}-\mathrm{C})=13.81 \mathrm{~Hz}) ; 22.35(\mathrm{~s}, \equiv \mathrm{CMe}) \end{aligned}$

${ }^{\text {a }}$ Spectra recorded in $\mathrm{CDCl}_{3}\left(+25^{\circ} \mathrm{C}\right)$ referenced to SiMe_{4}; $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet, $\mathrm{q}=$ quartet, $\mathrm{s}=$ singlet, $\mathrm{t}=$ triplet.
bands of 1 and 7 are as expected, identical. The carbonyl resonances for 1-7 are all shifted compared to the starting material $\left[\mathrm{WI}(\mathrm{CO})(\mathrm{NCMe})(\mathrm{dppm})\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right]$ which has $\nu(\mathrm{CO})=1960 \mathrm{~cm}^{-1}$ (in CHCl_{3}) [19].

The most likely coordination geometry about the tungsten centre is shown in Fig. 1; in this the carbonyl and but-2-yne ligands are cis to each other, as was observed in the structures of related complexes $[1,16,17,19,20]$. The geometries of the monocationic complexes $\left[\mathrm{WI}(\mathrm{CO}) \mathrm{L}(\mathrm{dppm})\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right] \mathrm{X} \quad\{\mathrm{L}=$ $\mathrm{P}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}\right)_{3}\left(\mathrm{X}=\mathrm{BF}_{4}^{-}\right)$[19] and $\mathrm{SC}\left(\mathrm{NH}_{2}\right)_{2}\left(\mathrm{X}=\mathrm{ClO}_{4}^{-}\right)$ [20]\} have been crystallographically determined, and have the structure shown in Fig. 1, in which the iodide and L are replaced by the bidentate $N N$ donor ligand. Many attempts to grow suitable single crystals for X-ray crystallography of 1-7 were unsuccessful.

The ${ }^{1} \mathrm{H}$ NMR spectra of all the complexes $1-7$ all show the expected features for the structure shown in Fig. 1. They also all show a single but-2-yne methyl

Fig. 1. Proposed structure for the dicationic mono(but-2-yne) complexes $\left[\mathrm{W}(\mathrm{CO})(\mathrm{NN})(\mathrm{dppm})\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right] \mathrm{I}(1-6)$.
resonance in their ${ }^{1} \mathrm{H}$ NMR spectra at room temperature which indicates the but-2-yne ligand is undergoing rapid propeller-like rotation at room temperature which is in accord with other workers' results for mono(but-2yne) complexes of molybdenum(II) and tungsten(II) [1,7,25,26]. Similarly ${ }^{13} \mathrm{C}$ NMR spectra also have the expected features for the geometry shown in Fig. 1. The ${ }^{13} \mathrm{C}$ NMR spectrum of 7 clearly confirms the incorporation of $\left[\mathrm{BPh}_{4}\right]^{-}$counteranions, which shows the characteristic $B C$ quartet at $164.2(J(B C)=49.5$ $\mathrm{Hz}) \mathrm{ppm}$. Templeton and Ward [27] have correlated the number of electrons donated by the alkyne and the ${ }^{13} \mathrm{C}$ NMR chemical shift. The values observed for complexes 1, 3, 4 and 7 at 220.32, 218.90, 221.70 and 220.30 ppm, respectively, are in accord with the but-2-yne ligand utilising both of its filled $\mathrm{p} \pi$-orbitals and donating four-electrons to the tungsten in these complexes. If the but-2-yne donates four-electrons to the tungsten in 1-7 then they obey the effective atomic number rule.

3. Experimental details

The synthesis and purification of the new compounds were carried out under dry nitrogen by use of standard Schlenk line techniques. The compounds [$\left.\mathrm{WI}(\mathrm{CO})(\mathrm{NCMe})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right\}\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right]$ [19] and N, N^{\prime}-cyclohexyldiazabutadiene, N, N^{\prime}-'butyldiazabutadiene and $N, N^{\prime}-p$-methoxyphenyldiazabutadiene [28] were prepared by the published methods. All other chemicals were obtained commercially and used without further purification, except for solvents, which were dried and distilled before use.

Elemental analyses (C, H and N) were determined using a Carlo Erba Elemental Analyser MOD 1106 (using helium as the carrier gas). Infrared spectra were recorded on a Perkin-Elmer 1430 ratio recording infrared spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a. Bruker AC 250 CP/MAS NMR spectrometer, with tetramethylsilane as the internal standard.

3.1. $\left[W(\mathrm{CO})\left(2,2^{\prime}-\right.\right.$ bipy $)\left\{\mathrm{Ph}_{2} P\left(\mathrm{CH}_{2}\right) P \mathrm{Ph} h_{2}\right\}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4} / \mathrm{I}\right.$ (1)
 Bipy ($0.0862 \mathrm{~g}, 0.552 \mathrm{mmol}$) was added to a stirred

 solution of $\left[\mathrm{WI}(\mathrm{CO})(\mathrm{NCMe})\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right\}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right](0.5 \mathrm{~g}, 0.552 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ cm^{3}) under a stream of dry nitrogen. After 6 days stirring the solution was filtered and the volume reduced to $2 \mathrm{~cm}^{3}$ in vacuo. Dropwise addition of diethyl ether precipitated the green dicationic complex [W (CO) $\left(2,2^{\prime}\right.$-bipy $\left.)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right)\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right] I$ (1), which on recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ yielded analytically pure $1(0.38 \mathrm{~g}, 68 \%)$.Similar reactions of [WI(CO) $(\mathrm{NCMe})\left\{\mathrm{Ph}_{2} \mathrm{P}^{\left(\mathrm{CH}_{2}\right)}\right.$ -$\left.\mathrm{PPh}_{2}\right\}\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\left[\mathrm{BF}_{4}\right]$ with an equimolar quantity of NN ($\mathrm{NN}=1,10$-phenanthroline, 5,6 -dimethyl- 1,10 phenanthroline, $\quad N, N^{\prime}$-cyclohexyldiazabutadiene, N, N^{\prime}-t butyldiazabutadiene or $N, N^{\prime}-p$-methoxyphenyldiazabutadiene) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature afforded the analogous complexes [W(CO)(NN)$\left.\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right\}\left(\eta^{2}-\mathrm{MeC}_{2} \mathrm{Me}\right)\right]\left[\mathrm{BF}_{4}\right] \mathrm{I}$ (2-6) (see Table 1 for physical and analytical data).
3.2. $\left[W(\mathrm{CO})\left(2,2^{\prime}-\right.\right.$ bipy $)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) P \mathrm{Ph}_{2}\right\}\left(\eta^{2}-\mathrm{MeC}_{2^{-}}\right.$ $\mathrm{Me})]\left[\mathrm{BPh}_{4}\right]_{2}(7)$
$\mathrm{Na}\left[\mathrm{BPh}_{4}\right](0.1677 \mathrm{~g}, 0.49 \mathrm{mmol})$ was added to a solution of $\left[\mathrm{W}(\mathrm{CO})\left(2,2^{\prime}-\right.\right.$ bipy $)\left(\mathrm{Ph}_{2} \mathbf{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right\}\left(\eta^{2}-\right.$ $\left.\mathrm{MeC}_{2} \mathrm{Me}\right)\left[\mathrm{BF}_{4}\right] \mathrm{I}(0.25 \mathrm{~g}, 0.245 \mathrm{mmol})$ in NCMe (20 cm^{3}) with stirring under a stream of dry nitrogen. After 17 h stirring the solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution filtered to remove NaI and $\mathrm{Na}\left[\mathrm{BF}_{4}\right]$ and reduced to a volume of $2 \mathrm{~cm}^{3}$ in vacuo. Dropwise addition of diethyl ether precipitated the green dicationic complex $\left[\mathrm{W}(\mathrm{CO})\left(2,2^{\prime}\right.\right.$-bipy $)\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right)\left(\eta^{2}-\right.$ $\left.\mathrm{MeC}_{2} \mathrm{Me}\right)\left[\mathrm{BPh}_{4}\right]_{2}$ (7), which on recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ afforded analytically pure $7(0.26 \mathrm{~g}$, 72%) (see Table 1 for physical and analytical data).

Acknowledgments

K.R.F. thanks the SERC for a studentship.

References

1 J.L. Templeton, Adv. Organomet. Chem., 29 (1989) 1, and references cited therein.
2 M. Bottrill and M. Green, J. Chem. Soc., Dalton Trans., (1977) 2365.

3 C.T. Lam, P.W.R. Corfield and S.J. Lippard, J. Am. Chem. Soc., 99 (1977) 617.

4 W. Beck and K. Schloter, Z. Naturforsch. Teil B, 33 (1978) 1214.
5 P.L. Watson and R.G. Bergman, J. Am. Chem. Soc., 102 (1980) 2698.

6 K. Sünkel, U. Nagel and W. Beck, J. Organomet. Chem., 222 (1981) 251.

7 S.R. Allen, P.K. Baker, S.G. Barnes, M. Green, L. Trollope, L.M. Muir and K.W. Muir, J. Chem. Soc., Dalton Trans., (1981) 873.
8 J.C. Jeffrey, J.C.V. Laurie, I. Moore and F.G.A. Stone, J. Organomet. Chem., 258 (1983) C37.
9 F.R. Kreissl, W. Sieber and W. Wolfgruber, Angew. Chem., Int. Edn. Engl., 22 (1983) 493.
10 K.R. Birdwhistell, T.L. Tonker and J.L. Templeton, J. Am. Chem. Soc., 107 (1985) 4474.
11 H.P. Kim, S. Kim, R.A. Jacobson and R.J. Angelici, Organometallics, 5 (1986) 2481.
12 P.K. Baker, E.M. Armstrong and M.G.B. Drew, Inorg. Chem., 27 (1988) 2287.

13 C.M. Giandomenico, C.T. Lam and S.J. Lippard, J. Am. Chem. Soc., 104 (1982) 1263.
14 S. Warner and S.J. Lippard, Organometallics, 5 (1986) 1716.
15 E.M. Armstrong, P.K. Baker and M.G.B. Drew, Organometallics, 7 (1988) 319.
16 E.M. Armstrong, P.K. Baker, M.E. Harman and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., (1989) 295.
17 P.K. Baker, E.M. Armstrong and M.G.B. Drew, Inorg. Chem., 28 (1989) 2406.

18 P.K. Baker, E.M. Armstrong and K.R. Flower, Polyhedron, 7 (1988) 2769.

19 P.K. Baker, K.R. Flower, M.G.B. Drew and G. Forsyth, J. Chem. Soc., Dalton Trans., (1989) 1903.
20 P.K. Baker, K.R. Flower, P.A. Bates and M.B. Hursthouse, J. Organomet. Chem., 372 (1989) 263.
21 P.K. Baker and K.R. Flower, Inorg. Chim. Acta, 165 (1989) 241.
22 P.K. Baker and K.R. Flower, Polyhedron, 9 (1990) 2233.
23 P.K. Baker and K.R. Flower, Polyhedron, 9 (1990) 2507.
24 P.K. Baker and K.R. Flower, J. Organomet. Chem., 397 (1990) 59.
25 J.L. Davidson and G. Vasapollo, J. Chem. Soc., Dalton Trans., (1985) 2239.

26 P.B. Winston, S.J.N. Burgmayer, T.L. Tonker and J.L. Templeton, Organometallics, 5 (1986) 1707.
27 J.L. Templeton and B.C. Ward, J. Am. Chem. Soc., 102 (1980) 3288.

28 J.M. Kliegman and R.K. Barnes, Tetrahedron, 26 (1970) 2555.

[^0]: Correspondence to: Dr. P.K. Baker.

[^1]: ${ }^{a}$ Spectra were recorded as thin films in CHCl_{3} between NaCl plates; brs $=$ broad strong, $\mathrm{s}=$ strong.

[^2]: ${ }^{\text {a }}$ Spectra recorded in $\mathrm{CDCl}_{3}\left(+25^{\circ} \mathrm{C}\right)$ referenced to $\mathrm{SiMe}_{4} ; \mathrm{br}=$ broad, $\mathrm{m}=$ multiplet, $\mathrm{s}=$ singlet.

